Finitely Generated Abelian Groups

(G, +) - Abelian group Additive Notation : Given EG, NEZ $u_{x} = \begin{cases} x + x \cdots + x \quad (u \text{ times}) \quad i \neq n \neq 0 \\ 0 \leftarrow c \qquad \qquad i \neq n = 0 \\ (-x) + \cdots + (-x) \quad (-n \text{ times}) \quad i \neq n < 0 \end{cases}$ inverse of x asually widten x H Caretall. not multiplication HCG Subgroup, xeG, x+H = {x+h | heG} Always around z+H=g+H (=> x-y E H Aim : Classify all Finitely generated Abelian groups up to We say a is a tovsion element of G isomorphism. Definition tG := { x e G | ord(x) < 0 } < G Proposition tGCG is a subgroup, called the torsion subgroup. ProA x E t G (=>] he N such that hx = 0 • ord(0)=1=> 0 e t G · x, y E +G =) 3 m, n E /N such that mx = 0 = ny =) (mu)(x+y) = n(mx) + m(ny) = 0+0 = 0=) x+y = t f * x E t G =) Im e N such that ma = 0 => m (- 2) = 0 =) -xeta Esample G = (R/Z,+). [x] = tG (=) I he N show that n (a) = (nx] = (o] = JneN such that nx = 72 (=) x e Q $= > t = (((/ _{ / + }))$ Remarks · It & how-Abelian , the may not be a subgroup.

Definition G is torsion \Longrightarrow G = tG G is torsion - tree \bigoplus tG = $\{0\}$ Example • $|G| < \infty \implies$ G torsion • $(\mathbb{Q}/\mathbb{Z}, +)$ torsion • $(\mathbb{Z}^{k}, +)$ torsion - tree <u>Proposition</u> $G/_{tG}$ <u>torsion - tree</u> <u>Proof</u> Let x + tG be torsion in $G/_{tG}$ => $\exists u \in \mathbb{N}$ such that ux + tG = 0 + f(G)=> $hx \in tG$ => $\exists u \in \mathbb{N}$ such that $u(uz) = 0 \implies (uuu)z = 0$ => $z \leq tG \implies z + (tG) = 0 + (tG)$

Definition
A timitely generated, Abelian group G is tree it

$$\exists z_1, \dots, z_n \in G$$
 such that the tollowing property holds:
• Given $g \in G = \exists ! \lambda ; \in \mathbb{Z}$ such that
 $g = \lambda_1 z_1 + \lambda_2 z_2 + \dots + \lambda_n z_n$

•
$$\{x_1, ..., x_n\} \subset G$$
 a \mathbb{Z} -basis \Longrightarrow ord $(x_i) = \infty$ $\forall i$
and $G = gp(x_1) \oplus \dots \oplus gp(x_n) \cong (\mathbb{Z}^n, +)$
Proposition Let G be a finitely generated three Abelian group.
Any two \mathbb{Z} -bases have the same size.

$$\frac{Prot}{led} \{x_{1}, \dots, x_{n}\} \text{ and } \{y_{1}, \dots, y_{n}\} \text{ be } \mathbb{Z}-\text{bases for } \mathbb{F}$$

$$Perfine \ \mathbb{Z} \mathbb{G} := \{\mathbb{Z}_{0} \mid \mathbb{g} \in \mathbb{G}\} \quad \text{Portual Subgroup of } \mathbb{G}$$

$$\mathbb{Z} \mathbb{G} := \{\mathbb{X}, \mathbb{X}, + \dots + \mathbb{X}_{n} \mathbb{X}_{n} \mid \mathbb{Z} \mid \mathbb{X}_{1}\}$$

$$\text{Given } a, b \in \mathbb{G} \ , \ a = \alpha_{1} \mathbb{X}_{1} + \dots + \alpha_{n} \mathbb{X}_{n} \ , \ b = \beta_{1} \mathbb{X}_{1} + \dots + \beta_{n} \mathbb{X}_{n}$$

$$a + 2\mathbb{E} = \{\mathbb{X}, \mathbb{X}_{1} + \dots + \mathbb{X}_{n} \mathbb{X}_{n} \mid \mathbb{Z} \mid \mathbb{X}_{1}\}$$

$$\text{Given } a, b \in \mathbb{G} \ , \ a = \alpha_{1} \mathbb{X}_{1} + \dots + \mathbb{K}_{n} \mathbb{X}_{n} \ , \ b = \beta_{1} \mathbb{X}_{1} + \dots + \beta_{n} \mathbb{X}_{n}$$

$$a + 2\mathbb{E} = \{\mathbb{X}, \mathbb{X}_{n} + \dots + \mathbb{X}_{n} \mathbb{Z}_{n} \mid \mathbb{Z} \mid \mathbb{X}_{n}\}$$

$$\text{For } \mathbb{E} = \{\mathbb{E}^{n} \\ \text{Exercely } \mathbb{E}^{n} = \mathbb{E}^{n} \\ \text{For } \mathbb{E}^{n} = \mathbb{E}^{n} = \mathbb{E}^{n} \\ \text{For } \mathbb{E}^{n} = \mathbb{E}^{n} \\ \text{For } \mathbb{E}^{n} = \mathbb{E}^{n} \\ \mathbb{E}^{n} = \mathbb{E}^{n} \\ \text{For } \mathbb{E}^{n} = \mathbb{E}^{n} \\ \mathbb{E}^{n} = \mathbb{E}^{n} \\ \text{For } \mathbb{E}^{n} = \mathbb{E}^{n} \\ \mathbb{E}^{$$

Theorem Let G be F.g. Abetian with

$$vank(G) = n$$
. Then $\exists F \in G$ a finitely
generated thee Abelian Subgroup such that
 $G = F \oplus tG$ and $vanh(F) = n$

Prof
Gr/t G timited generated, then Abesian =>
$$\exists x_{1},..., x_{n} \in G$$

Such that $\{x_{1}+tG, ..., x_{n}+tG\}$ is a Z-basic tor G/tG
(at $F = gp(\{x_{1},..., x_{n}\})$.
Claim $\{x_{1},..., x_{n}\} \subset F$ is a Z-basic tor F. $\{x_{1}(tG),...,x_{n}(tG)\}$
 $\lambda_{1}x_{1}+...+\lambda_{n}x_{n} = \lambda_{1}'x_{n}+...+\lambda_{n}'x_{n}$
 $= \lambda_{1}(x_{1}+tG) + ...+\lambda_{n}(x_{n}+tG) = \lambda_{1}'(x_{1}+tG) + ...+\lambda_{n}'(x_{n}+tG)$
 $= \lambda_{1} = \lambda_{1}'$ $\forall i => \{x_{1},...,x_{n}\}$ is a Z-basic tor F.
We analt now prove $G = F \oplus tG$. Note G Abedian => Z_{1} holds
We should check Y

• Let
$$g \in G = \exists \lambda_1, \dots, \lambda_n \in \mathbb{Z}$$
 such that
 $g+tG = \lambda_1(x_1+tG) + \dots + \lambda_n(x_n+tG)$
 $= (\lambda_1, x_1 + \dots + \lambda_n x_n) + tG$
 $\Rightarrow g = \lambda_1 x_1 + \dots + \lambda_n x_n + h , where hetG.$
 $e F = etG$
 $t_1 + h_1 = t_2 + h_2 = t_1 - t_2 = h_2 - h_1$
 $f = t_G = f = t_G$
 $\Rightarrow ard(t_1 - t_2) < a = t_1 - t_2 = a = t_1 = t_2$
 $\Rightarrow G = f \oplus tG = a$

Corollary Let G be a Finitely generated Abelian group the G = R × tG where h = rank (G) and /tG) < as Proof G = F @ tG, hence we can detrin the homomorphism $7 + h \mapsto h$ r a F tG $Im \phi = tG$, $kev \phi = F \Rightarrow G/F \equiv tG$ gp (x1 ... x x) = + G G 7.g. =) G/F 7.g. =) tG 7.g.) tG={7,x,+..+ haxa 0≤7; ≤ ord(x;)} the fig. and torsion => Ital = a $\operatorname{vanh}(G) = u \implies F \cong \mathbb{Z}^n$ $G = F \oplus t G \cong \mathbb{Z}^n \times t G$ t.g. Tree Abelian Ginete Abelian Hence to classify f.g. Abelian groups we must now classify all minite Meetian groups .